SYLLABUS

Course Title: BASIC THERMODYNAMICS

Course code: 18ME33

MODULE I

Fundamental Concepts & Definitions: Thermodynamic definition and scope,	Hours:
Microscopic and Macroscopic approaches. Some practical applications of engineering	8
thermodynamic Systems, Characteristics of system boundary and control surface,	
examples. Thermodynamic properties; definition and units, intensive, extensive properties,	
specific properties, pressure, specific volume, Thermodynamic state, state point, state	
diagram, path and process, quasi-static process, cyclic and non-cyclic; processes;	
Thermodynamic equilibrium; definition, mechanical equilibrium; diathermic wall, thermal	
equilibrium, chemical equilibrium, Zeroth law of thermodynamics, Temperature; concepts,	
scales, international fixed points and measurement of temperature. Constant volume gas	
thermometer, constant pressure gas thermometer, mercury in glass thermometer.	
Blooms Taxonomy: L2 – Understanding, L3 – Applying, L4 – Analysing	

MODULE II

Work and Heat: Mechanics, definition of work and its limitations. Thermodynamic definition of work; examples, sign convention. Displacement work; as a part of a system boundary, as a whole of a system boundary, expressions for displacement work in various processes through p-v diagrams. Shaft work; Electrical work. Other types of work. Heat; definition, units and sign convention. Problems. First Law of Thermodynamics: Joules experiments, equivalence of heat and work. Statement of the First law of thermodynamics, extension of the First law to non - cyclic processes, energy, energy as a property, modes of energy, Extension of the First law to control volume; steady flow energy equation(SFEE), important

Blooms Taxonomy: L2 – Understanding L3 – Applying, L4 – Analyzing

MODULE III

Second Law of Thermodynamics: Limitations of first law of thermodynamics, Thermal
reservoir, heat engine and heat pump: Schematic representation, efficiency and COP.
Reversed heat engine, schematic representation, importance and superiority of a reversible
heat engine and irreversible processes, internal and external reversibility. Kelvin - Planck
statement of the Second law of Thermodynamics; PMM I and PMM II, Clausius statement
of Second law of Thermodynamics, Equivalence of the two statements; Carnot cycle,
Carnot principles. Problems Entropy: Clausius inequality, Statement- proof, Entropy-
definition, a property, change of entropy, entropy as a quantitative test for irreversibility,
principle of increase in entropy, entropy as a coordinate.Hours

Blooms Taxonomy: L2 – Understanding L3 – Applying, L4 – Analyzing

MODULE IV

Availability, Irreversibility and General Thermodynamic relations. Introduction,
Availability (Exergy), Unavailable energy, Relation between increase in unavailable
energy and increase in entropy. Maximum work, maximum useful work for a system and
control volume, irreversibility. Pure Substances: P-T and P-V diagrams, triple point and
critical points. Sub-cooled liquid, saturated liquid, mixture of saturated liquid and vapor,
saturated vapor and superheated vapor states of pure substance with water as example.
Enthalpy of change of phase (Latent heat). Dryness fraction (quality), T-S and H-S
diagrams, representation of various processes on these diagrams. Steam tables and its use.
Throttling calorimeter, separating and throttling calorimeter.Hours

PL	
Blooms Taxonomy: L2 – Understanding, L3 – Applying, L4 – Applying	- Introduction, Van-der Waal's Equation of state, Van-der Waal's constants in itical properties, Beattie-Bridgeman equation, Law of corresponding states, lity factor; compressibility chart. Difference between Ideal and real gases. mpression. Steam nozzles: Flow of steam through nozzles, Shape of nozzles, tion, Critical pressure ratio. Supersaturated flow
g, go oppynig, by - Anaryzing	MODULE Vres, Daltons law of partial pressures, Amagat's law of additive perties of perfect and ideal gases, Air- Water mixtures and 8Hours 8an-der Waal's Equation of state, Van-der Waal's constants in Beattie-Bridgeman equation, Law of corresponding states, pressibility chart. Difference between Ideal and real gases. In nozzles: Flow of steam through nozzles, Shape of nozzles, sure ratio. Supersaturated flow
MODULE V	mixtures and 8 s constants in inding states,
Ideal gases: Ideal gas mixtures, Daltons law of partial pressures. Amount's law of this	
volumes evaluation of properties of a first of partial pressures, Amagat's law of additive	Hours
inco, evaluation of properties of perfect and ideal gases Air Weter mint	
properties.	0
Real gases - Introduction Vander Waal's Equation 6 to 1	
terms and the location, van-der waars Equation of state, Van-der Waal's constants in	
of childen properties, Dealtie-Bridgeman equation Law of	
compressibility factor: compressibility chart Difference but of conceptioning states,	
Work for a second	
Tork for compression. Steam nozzies: Flow of steam through negative of	
effect of friction. Critical pressure ratio, Supersaturated Generational Interfect, Shape of hozzles,	
Blooms Transmin 1.2. List and ratio, Supersaturated now.	
Blooms Taxonomy: L2 – UnderstandingL3 – Applying,	

DAYS	TITTLE	SUB TOPICS	Course Outcomes (CO)
1.	Fundamental Concepts & Definitions	Thermodynamic definition and scope, Microscopic and Macroscopic approaches. Some practical applications of engineering thermodynamic Systems	C01
2.		Characteristics of system boundary and control surface, examples. Thermodynamic properties	C01
3.		Definition and units, intensive, extensive properties, specific properties, pressure, specific volume	C01
4.		I hermodynamic state, state point, state diagram, path and process, quasi-static process	CO1
5.		Cyclic and non-cyclic; processes; Thermodynamic equilibrium	C01
6.		Definition, mechanical equilibrium; diathermic wall, thermal equilibrium, chemical equilibrium, Zeroth law of thermodynamics	C01
7.		Temperature; concepts, scales, international fixed points and measurement of temperature	C01
8.		Constant volume gas thermometer, constant pressure gas thermometer, mercury in glass thermometer	CO1
9.		Mechanics, definition of work and its limitations.	CO2
10.	Work and Heat	Thermodynamic definition of work; examples, sign convention	CO2
11.		Displacement work; as a part of a system boundary, as a whole of a system boundary	CO2
12.		Expressions for displacement work in various processes through p-v diagrams. Shaft work; electrical work. Other types of work.	CO2
13.		Heat; definition, units and sign convention. Problems. First Law of Thermodynamics	CO2
14.		Joules experiments, equivalence of heat and work.	CO2

15		Statement of the First law of thermodynamics, extension	CO 2
		of the First law to non - cyclic processes	
16	5.	Energy, energy as a property, modes of energy, Extension of the First law to control volume; steady flow energy equation(SFEE), important	CO2
17		Limitations of first law of thermodynamics	CO3
18		Thermal reservoir, heat engine and heat pump	CO3
19		Schematic representation, efficiency and COP. Reversed heat engine, schematic representation, importance and superiority of a reversible heat engine and irreversible processes	CO3
20		Internal and external reversibility. Kelvin - planck statement of the second law of thermodynamics	CO3
21.	Second Law of	PMM I and PMM II, Clausius statement of Second law of Thermodynamics	CO3
22.	Thermodynamics	Equivalence of the two statements; Carnot cycle, Carnot principles. Problems Entropy	CO3
23.		Clausius inequality, Statement- proof, Entropy- definition, a property, change of entropy	CO3
24.		Entropy as a quantitative test for irreversibility, principle of increase in entropy, entropy as a coordinate.	CO3
25.		Introduction, Availability (Exergy), Unavailable energy, Relation between increase in unavailable energy and increase in entropy	CO4
26.		Maximum work, maximum useful work for a system and control volume, irreversibility	CO4
27.	Availability,	Pure Substances: P-T and P-V diagrams, triple point and critical points	CO4
28.	Irreversibility and General	Sub-cooled liquid, saturated liquid, mixture of saturated liquid and vapor,	CO4
29.	Thermodynamic relations	Enthalpy of change of phase (Latent heat). Dryness fraction (quality), T-S and H-S diagrams	CO4
30.		Representation of various processes on these diagrams. Steam tables and its use	CO4
31.		Throttling calorimeter, separating and throttling calorimeter.	CO4
32.		Saturated vapor and superheated vapor states of pure substance with water as example	CO4
33.		Ideal gas mixtures, Daltons law of partial pressures, , ,.	CO5
34.		Amagat's law of additive volumes, evaluation of properties of perfect and ideal gases	CO5
35.	Ideal gases and Real gases	Air- Water mixtures and related properties.	CO5
36.	-	Real gases – Introduction, Van-der Waal's Equation of state, Van-der Waal's constants in terms of critical properties	CO5
37.		Beattie-Bridgeman equation, Law of corresponding states, compressibility factor; compressibility chart.	CO5

38.	Difference between Ideal and real gases	CO5
39.	Flow of steam through nozzles	CO5
40.	Work for compression. Steam nozzles:, shape of nozzles, effect of friction, critical pressure ratio, supersaturated flow.	CO5

Question paper pattern:

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- > There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- > The students will have to answer five full questions, selecting one full question from each module.

/Text Book Details

- Basic and Applied Thermodynamics P.K.Nag, Tata McGraw Hill 2nd Ed., 2002
- Basic Engineering Thermodynamics A.Venkatesh Universities Press, 2008 \triangleright
- Basic Thermodynamics, B.K Venkanna, Swati B. Wadavadagi PHI, New Delhi 2010 ≻

Reference

- Thermodynamics- An Engineering Approach YunusA.Cenegal and Michael A.Boles Tata McGraw Hill publications 2002
- An Introduction to Thermodynamcis Y.V.C.Rao Wiley Eastern 1993, P
- Engineering Thermodynamics .B. Jones and G.A. Hawkins John Wiley and Sons. \triangleright

Faculty In-Charge

Head of the Department